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Abstract—Some fundamental reasons why our networked sys-
tems are still vulnerable to network attacks are because (1) they
are more open than necessary; (2) they are homogeneous, i.e.,
the same way to exploit a vulnerability on one machine is easily
applicable to many other machines (which is particularly a severe
issue in cloud computing environments when virtual machines
images are heavily reused/cloned); (3) current networked services
are merely static targets, i.e., they are easily predictable and do
not change. While network authentication and access control
mechanisms such as firewall and VPN can help reduce the
openness (mostly at network perimeter level), they do not help
much on the latter two factors. To bridge the gap and greatly
complement existing network authentication/access control mech-
anisms, we propose CloudRand, a new framework to make
networked systems/services in the cloud heterogeneous (every host
has a different networking interface) and moving targets (such
interfaces keep changing and they are unpredictable to untrusted
entities). Inspired by the previous work on host-level (memory
or instruction) Address Space Randomization (ASR), we build
a lightweight solution to randomize network service interfaces.
Thus, even derived from the same image, each virtual machine
can have very different network service interfaces and they keep
changing to further reduce the attack surface. CloudRand is an
application-independent security service, orthogonal to existing
application/network security mechanisms such as authentication,
encryption, and access control. To fit into different environments
such as clouds or enterprise networks, we provide various pro-
totype systems at different levels for flexible deployment choices,
e.g., host level (kernel drivers for both Linux and Windows),
network level (based on Click modular router or software-defined
networking technology), virtual machine hypervisor level (based
on Xen), and application level (browser plugin). Our extensive
evaluation shows that this solution has low overhead, and it
can it can significantly reduce the network attack surface and
successfully defeat malware epidemic attacks.

I. INTRODUCTION

Our computers and networks on the Internet are still sus-

ceptible to all kinds of cyber attacks. As a result, our society

has significant economic loss due to these attacks. Earlier

in 2011, it is officially estimated by the British government

[16] that cybercrime costs the United Kingdom more than 27

billion pounds (i.e., 43.5 billion dollars) a year. It is clear

that the global loss is significantly much higher than that.

Recently, more severe and persistent worries also come from

the new revolutionary computing platform, cloud computing

environment. According to a recent Gartner report1, the global

cloud computing market will reach 411 billion by 2020.

Despite its rapid development, security and privacy issues

1https://www.gartner.com/newsroom/id/3815165

remain the major obstacles to cloud computing adoption

[3], [13]. Moreover, concerning the usability, current cloud

environments [13] may allow close communication with the

bare metal instead of providing only software services. Thus,

users can control nearly the entire software stack. Meanwhile,

due to the wide use of virtual machine image migration and

clone, there may exist a large number of virtual machines with

similar operating systems and application configurations and

as well as similar exploitable vulnerabilities. They both give

fertile soil to the growth of malware epidemic attacks and once

one guest machine inside of the cloud is comprised, it could

bring catastrophic effect to the whole infrastructure.

Some fundamental reasons why our networked systems are

still vulnerable to cyber attacks are as follows: (i) openness,

which means that hosts are probably too open (in terms of the

network surface) than necessary to such unwanted traffic; (ii)

homogeneity, which means that hosts are too homogeneous

so that the same exploitation successfully installed on one

machine can be easily applied to another hosts (this is partic-

ularly a severe issue in cloud computing as discussed before);

and (iii) static target, which means that the network interfaces

of hosts (e.g., service ports) are static and predictable which

makes the hosts vulnerable to attacks that successfully guess

that right exploitation on the right service.

A lot of research and development has been conducted

on reducing the openness of hosts/networks, e.g., existing

network authentication and access control mechanisms (such

as firewalls or distributed firewalls [8], VPN, router ACL).

While they are quite effective to reduce openness (mostly

at the network perimeter level), they barely help much on

the latter two issues, i.e., homogeneity and static target. As

a result, they are not enough to reduce the cyber attack

surface. For example, while firewalls/VPNs can reduce exter-

nal unauthorized attacks, they can hardly deal with internal

attacks/propagations. Mechanisms such as router ACL that

mostly use IP addresses to allow/block remote access are

not flexible to handle users using DHCP (IP addresses will

change), NAT (many users will share the same IP address), or

even users using multiple machines (at different locations, or

during travel, etc). Most of these techniques still allow access

to common service ports such as 80 (web), 22 (SSH), which

are still static targets exposed to attacks. In addition, Microsoft

Windows will open many default service ports, e.g., 135, 137-

139, 445, for NetBIOS (while these ports can be blocked

from external network access, they are typically open to



internal network access). All these open service ports and the

underlining homogeneous applications represent a significant

attack surface exposed to potential risks. While they can rely

on application level protection (e.g., application authentication

protocols, application communication encryption), these are

likely application specific and may not easy to apply to other

applications without code modification, which makes them

unsuitable as a generic application-agnostic network level

solution. In addition, application-level protection may not stop

exploitation attacks such as brute force SSH login attacks, not

even mention infamous DoS attacks. We provide more details

on related work and their weakness/differences in Section II.

In this paper, we propose CloudRand, a new lightweight

and incrementally deployable framework, to provide secure

networked systems/services for cloud computing environment

or even enterprise network.2 The key insight is to build

heterogeneous and moving-target network port interfaces thus

to decrease (and simultaneously shift) the existing attack

surface to adversaries while still providing dependable service

to system users and owners. More specifically, inspired by the

previous research of system-level instruction set or memory

layout randomization [14], [7], [17], we extend the idea into

a wider network scenario and dynamically randomize the

network interfaces, i.e., network port numbers. In doing so,

we make our network port interface heterogeneous (every host

has a different one). It appears chaotic to attackers (shifting

all the time), and thus it forces the adversaries to significantly

increase their work effort for every desired target.

In short, this paper makes the following contributions:

First, we propose to build heterogeneous and moving-

target network port interfaces to significantly reduce the attack

surface. Compared with existing network authentication and

access control mechanisms that mainly reduce the openness,

our solution is complementary and orthogonal, focusing on

reducing homogeneity and providing moving-target defense.

It is lightweight, incrementally deployable, and a nice add-on

to cloud defense in depth.

Second, we design and implement a prototype system,

CloudRand. As a cloud security service, it does not need

to change or reconfigure service applications, which makes

existing cloud services easy to adopt this additional layer

of protection (defense in depth), in addition to their existing

authentication or access control mechanisms. We make novel

use of hash chain techniques to provide flexible random-

ization/translation and easily control the expiration of the

service without the need of blacklist or revocation lists. Fur-

thermore, we introduce process-binding techniques to reduce

the probability that attackers misuse the provided application

transparency to propagate from trusted nodes in the cloud.

Finally, to fit into different environments such as clouds or

enterprise networks, we provide various implementations at

different levels, e.g., host level (kernel drivers for both Linux

and Windows), network level (based on Click modular router

2We focus on cloud environment for the rest paper. However we note the
techniques can also be easily deployed in enterprise networks as discussed in
section IV.

or SDN technology), virtual machine hypervisor level (based

on Xen), and application level (browser plugin).

Third, we extensively evaluate our prototype system in

terms of effectiveness, efficiency, and flexibility. We show that

CloudRand can significantly reduce network attack surface and

successfully defeat malware penetration/epidemic attacks. In

addition, CloudRand has a very low runtime overhead, e.g.,

it is more than six times faster than using SSL encryption in

network communications in our evaluation.

For the rest of the paper, we first introduce related work

and clarify their difference from our work in Section §II.

We detail our design of CloudRand in Section §III and the

implementation in Section §IV. We provide extensive evalu-

ation in Section §V and discuss limitations and other issues

in Section §VI. We conclude our work and point out future

directions in Section §VII.

II. RELATED WORK

System Randomization Techniques: Our work fits into

the large body of research that applies automated diversity

transformation to software/system to increase the difficulty

for an attacker to exploit a security vulnerability. Several

well-known randomization techniques at host side have been

proposed, including Address Space Randomization (ASR)

[14], [9], [30], system call randomization [10], instruction

set randomization [7], [17]. For example, the basic idea of

ASR is to introduce artificial diversity by randomizing the

memory location of certain system components to defeat code

injection attacks such as buffer overflow. The effectiveness and

weaknesses of these techniques are well studied [22], [24],

[12]. Recently, n-variant systems [12] are proposed. This n-

variant framework executes a set of automatically diversified

variants on the same inputs, and monitors their behavior

to detect divergences. By constructing variants with disjoint

exploitation sets, it is very hard to carry out large classes of im-

portant attacks. Different from all these work, our CloudRand

technique is a network-level solution. Unlike those host-level

techniques that might cause systems/applications crash on an

unsuccessful attack attempt when an actual exploit is input into

the system, CloudRand can prevent an unsuccessful attack to

send the actual exploit. Compared to the above techniques, our

CloudRand solution is more lightweight and preventive.

Similar to ASR, Network Address Space Randomization

(NASR) is also proposed [6] with the goal to limit or slow

down (but not prevent) hitlist worm propagation. The idea

is basically to change Internet-wide IP address frequently

so that the hitlist information used by worms will be stale

shortly. This technique is only targeting to slow down (but

not prevent) hitlist worm and has several practical limitations

(e.g., it requires Internet-wide coordination of IP addresses)

that make it hard to be actually deployed on Internet. Our

CloudRand technique has a broader applicable scope (not just

for defeating hitlist worm) and is much more practical for

deployment on local networks or Internet than NASR.

Enterprise Network Protection Techniques (for inside

threats): Firewalls and Network Intrusion Detection System



(NIDS) are good approaches to protect internal hosts from

outside attacks, but they have a limitation of not being able to

detect attacks from the inside. To overcome this limitation,

distributed firewalls were proposed to protect hosts from

attacks both of inside and outside [8] [28] [31]. Even though

they provide an ability to block some suspicious internal

traffic, they still do not block well-known network ports such

as port 80 for Web service. Essentially, they did not make

internal malware propagation much harder. The same way that

successful infiltration can still succeed on other internal hosts

due to the homogeneity and static firewall configuration at each

host. And this makes possible for inside malware, to spread

over the well-known ports. With CloudRand, malware can not

spread itself because CloudRand randomizes every network

ports for service, even if it is not detected.

Network Authorization and Access Control Techniques:

There are several standard techniques used for network autho-

rization and access control, such as VPN (Virtual Private Net-

work) and Router ACL. CloudRand is fundamentally different

from them. First, existing network access control solutions are

mainly designed to prevent unauthorized clients based on their

IP addresses. That is, it is hard for them to prevent threats

from hosts which are dynamically changing their IP addresses.

And it is very common in current network environments (e.g.,

dynamic IP address and relocating VMs in a cloud computing).

As a contrast, the ultimate goal of CloudRand is to reduce

attack surfaces by randomizing network interfaces in server

side. Thus, our CloudRand solution can reduce threats even

if they are from dynamically changing IP addresses. Second,

CloudRand uses lightweight randomization techniques such as

hash functions, which have lower overhead than full crypto-

graphic authentication protocols and packet payload encryp-

tion/decryption mechanisms. Finally it is worth noting that

CloudRand is not intended to replace them but to complement

them because their protection focuses are orthogonal.

Port-knocking [19] and Single Packet Authentication (SPA)

[11] are two proposed techniques for protecting hosts from

network scanning and they use multiple packets (or single

encrypted packet) to identify a client whether it is benign

or not. There are significant differences between them and

CloudRand: (1) In Port-Knocking, the sequence of contacting

network ports is static. Therefore if an attacker knows this

sequence, he can use this information for future attacks. How-

ever, because CloudRand changes network port dynamically, it

is nearly impossible for an attacker to guess future open ports.

(2) Port-knocking suffers from packet out-of-order delivery

and it frequently happens in current networks. But CloudRand

does not have this problem. (3) Fundamentally, the goal and

protection granularity are different. The granularity of Port-

knocking and SPA is at host level and primarily used to

authenticate a specific client/host. However, CloudRand is

primarily used to provide a fast-flux networking interface for

the server and the protection granularity is at per-application

or per-service level.

Port Randomization/Translation Techniques: A similar

study to our CloudRand technique is presented in [27], in

which a port hiding technique is proposed to defend Web

applications against DoS attacks. The authors suggest hiding

a server port number and allowing a legitimate client to use

the hidden server port number as an authenticator to access

the Web application. Our work is different from this study in

several ways: (1) The goal is different. Their approach can

be only used to protect Web applications from DoS attacks,

while our solution can be used to protect any applications

in hosts/cloud to reduce attack surface with this moving-

target defense. (2) The randomization technique is different.

We apply a novel use of reverse hash chain to design port

randomization for temporal clients with automatic expiration

without even changing the key/seed, however their approach

requires periodically update keys. (3) They use Javascript

redirection technique at client side to translate Web requests

and forward to the right server port. This cannot be applicable

to services other than Web application. Instead, we provide

more general and comprehensive translation techniques that

can be applicable to all applications.

III. SYSTEM DESIGN

A. System Overview and Illustration

CloudRand is a security service that can be provided at

hypervisor level to hosts (virtual machines, VM) in the cloud.

If a VM wants to use the service to randomize its network

interface (in terms of service ports), it first registers the service

with CloudRand and lets its network (client) users aware of

the use of this protection. From then on, the service ports on

the VM will be dynamically/periodically randomized. To avoid

modification/reconfiguration to the service software in the VM,

CloudRand does not require the server application to change

its actual listening port every time. Instead, CloudRand (in the

hypervisor) will perform on-the-fly port translation/rewriting

and redirect wanted traffic go through. For instance, at day

1,3 one HTTP/Web service is announced at a random port

12345, i.e., any connection to this service should go through

destination port 12345 only. A legitimate client (e.g., a VM

in the same cloud, or a partner cloud, or just a remote user)

is aware of this randomized port number (more precisely the

randomization algorithm). Thus, it will communicate with the

server through 12345. The application on VM does not change

its listening port but allows the hypervisor to rewrite/redirect

all the traffic from port 12345 to port 80 on-the-fly. Other

unwanted traffic to the wrong port (e.g., 80) will be ignored

(and the sender can be blocked after several failed attempts).

In the next period (e.g., day 2), the service port number is

changed from 12345 to another random number, e.g., 48205.

Again, the legitimate client knows about this change and can

still smoothly access the service. To be flexible, CloudRand

allows the service to provide two kind of accesses to users:

long-term or short-term. In the later case, the capability of

learning the right port to access will automatically expire.

3For convenience, in this scenario, we assume that CloudRand changes
network ports daily.



An illustrative working scenario is shown in Figure 1,

in which CloudRand is deployed in our cloud. With the

CloudRand protection to significantly reduce the attack sur-

face, attack trials from Internet (i.e., T1-1) and partner cloud

(i.e., T2-1) can not infect VMs in our cloud. However, those

unprotected VMs in partner cloud could be infected by attack

trails from Internet (i.e., T1-2) and/or neighbor VM (i.e., T2-

2).

Fig. 1. Illustrative Scenario of CloudRand

B. Randomization Algorithm Design

Depending on the actual need, CloudRand allows a server

to provide network port interface randomization protection to

two kinds of client users: those trustworthy ones with long-

term service or those less trusted with short-term service.

To provide a client with long-term randomization service,

the port randomization algorithm works as follows (shown in

Algorithm 1)

Input: S (random value for seed)
Input: P (original network port)
Input: Ts (starting date)
Input: Tn (current date)
Input: d = Tn - Ts

Output: Hd (hash chain value)

while d > 0 do
H ← H (S, P );
P = H;
d = d− 1;

end

H
d = H;

Algorithm 1: Randomization Algorithm

In many cases, it is necessary to give some client right to

contact CloudRand protected servers for a limited time. For

example, when it is hard to decide whether specific clients

are fully trusted or not, it is better to give a temporal access

which will expire after a desired times of use. To achieve this

goal, we reverse the use of hash chains stated earlier. And

we maintain another CloudRand translation policy entry for

temporary access purpose. We pre-calculated a long chain of

hash value, H(y) ... Hn(y) (here y is some initial random

number which will not be shared with clients), where n is a

relatively large number (set by the administrator according to

the maximum expiration time for a client). Instead of using

hash chain values from H(y) to Hn(y) as in the Cloud

Passport case, we reversely use the chain from Hn(y) (in day

1) to H(y) (in day n). In order to allow an access that expires

in e days, assume the current hash value is Hm(y), we provide

the client Hm−e+1(y).

Fig. 2. Using reverse hash chain in port randomization

Figure 2 shows an example with e = 3, and the client

obtains Y = Hm−2(y). For the first day, the client uses

H2(Y ) = Hm(y) to calculate the port number.4 On day 2, the

client uses H1(Y ) = Hm−1(y). Similarly, on day 3, the port

number is calculated using Y = Hm−2(y). If three days have

been passed, the client will fail to access because it cannot

obtain previous hash value Hm−3(y) (it only knows Hm−2).

Since a hash value is not reversible, our CloudRand granted

access is guaranteed to automatically expire after a desired

time of use.

In principle, one can use any existing hash algorithms

such as MD5. In our current implementation, we use a

fast-speed and specialized-in-integer (because network port

number is integer value) hash function [29]. Additionally, it

is important to prevent randomized network port values from

conflicting with each other if possible, although it is very

rare and probably never happen in practice. To avoid port

collisions on a single service, we provide the option of using

Hd(seed, original port) ⊕ OriginalPort as the destination

port for a client to use, similar to [27].

It is worth noting that the CloudRand protected server needs

to make its client users aware of the randomization algorithm

(either long-term or short-term). We do not consider this as a

practical limitation. In reality, a server that needs protection

from CloudRand typically has that capability and can coordi-

nate with its users using any existing approach/protocol (e.g.,

as part of the service agreement, establishing a very simple

web service for the purpose), or through their already existing

communication channels, or through out-of-band channels

such as email, web, phone, short message.

C. On-the-fly CloudRand Translation

One technique challenge comes from the requirement of

server application transparency. The binding port for server

4Port number is calculated by original port ⊕ current hash value



side software is usually statically specified. Some notorious

service ports are fixed and not easy to change, e.g., Windows

NetBIOS sharing. Even for those configurable services, many

regular users may not know how to change default ports.

We propose to provide our application-transparent

CloudRand service at the hypervisor level inside the cloud.

Specifically, we use Xen[4] as our hypervisor platform and

control Dom0 to execute port translation and traffic protection

for other DomU. For instance, at the server side, once one

registered service application starts, CloudRand performs

corresponding randomization algorithm to determine current

port number and adds one new rule to its CloudRand service

table for this VM, such as port 12345 → port 80. If a

packet targets at the randomized port 12345 to the destination

VM, CloudRand redirects and rewrite the packet to the port

80 on-the-fly. Any other traffic, including the traffic directs

to port 80, may be simply discarded or further monitored

(because they are suspicious).

D. In-Cloud Process Binding

Previously we have discussed the service application trans-

parency. Similarly, we may also provide client application

transparency. In this section, we first assume the communi-

cating client is also in the cloud, either the same cloud or a

collaborative cloud, and we leave the discussion of a remote

client to next section. Clearly, the in-cloud client side can use

the same translation mechanism as long as CloudRand service

is granted. Thus, client application can work even without

knowing the randomization algorithm.

However, there is a subtle issue we can discuss here. While

providing great convenience, arguably the client application

transparency can be misused if the client is compromised (e.g.,

by malware). Thus, the malware program inside the client can

also access the right port of the server (because CloudRand

at client side does blind translation). To reduce such risk, for

client-side CloudRand, we provide process-binding translation,

e.g., the port translation is binded to the corresponding certain

legitimate program. To realize automatic process-binding, one

can start with providing a list of commonly used legitimate

client-side programs that will be used to contact CloudRand

protected service. It is not surprising that for specific protected

service, the number of legitimate client software is typically

very limited and easily enumerable. For example, if the web

service on port 80 is protected by CloudRand, programs

such as IE,Firefox, Google Chrome, can be considered

as legitimate and automatically binded for port translation.

Meanwhile, users can always customize the list and add new

programs as they want.

Implementing such function is not straightforward at hyper-

visor level due to the lack of semantic information of the OS

[25], [26]. Even with introspection tools such as XenAccess

[20] so that we can get access to raw memory of each

guest system, the task of extracting the kernel data structure

from the mapped memory to bind packets with its source

program is still challenging. In CloudRand, we implement our

own techniques to extract fine-grained process-to-port binding

information, similar to [25], [26].

Specifically, in Linux, the open socket information is ex-

pressed as files owned by each process. Thus, by examining

the kernel exported symbols stored in the System.map, we

first search and extract virtual address of all the related kernel

symbols, including inet_hashinfo for network service

and linked list of task_struct for each process. For

the structure inet_hashinfo, it maintains all local socket

binding information. We further search the linked list of sub-

structure inet_bind_hashbucket and enumerates all the

nodes inside of inet_bind_bucket. In this way, we obtain

the information of the port and the binded socket. On the

other side, XenAccess provides basic introspection function

to allow us introspect all the process information. From the

base address of structure task_struct, we traverse the its

sub-structure, files_struct, to find all the sock files used

by each process. If any of them matches the previous extracted

socket file, we can correlate the port with the certain process.

For windows, we begin with examining the loaded modules

and find the location of the network driver tcpip.sys.

In the kernel region, we locate the KdVersionBlock (fix

0xffdff034 offset for XP) and derive the address of

PsLoadedModules. After iterating the module lists and

getting the pointer of tcpip.sys, we further find the data

structure AddrObjTable for TCP, TCBTable for UDP, that

maintains the linked list of objects containing network ports

and process IDs for open sockets/connections.

IV. EXTENDING CLOUDRAND FROM HYPERVISOR TO

MULTIPLE LAYERS

We have implemented CloudRand at hypervisor level on

top of the open-source cloud computing environment Xen [4].

We take advantage of existing IPTables[2] in Xen Dom0 to

monitor, redirect, and filter out unwanted traffic.

It is worth noting that the idea behind hypervisor-

level CloudRand can be easily extended to other environ-

ments/layers. To maximize the flexibility of real-world deploy-

ment, we extend CloudRand translators onto different levels

such as application level, host (kernel) level, and network

(router/switch) level. Table I summarizes the design space,

pros/cons, and examples of our current CloudRand implemen-

tations.

When applying CloudRand in real world clouds/networks,

we need to install our components at network, hypervisor,

application, and/or OS level. Since each cloud computing

environment may be different from each other, it could be

hard to predict which level is the best selection to minimize the

modification to the systems. Thus, we provide multiple level

solutions of CloudRand for the cloud/network administrator

to flexibly choose the most suitable solution based on their

actual environments and needs.

A. Network Level Translator

Our current implementation based on Click modular [18]

router is shown in Figure 3. We implemented a new PortRan-

dom element in C++ to the Click modular router. This element



Approach Layer Pros Cons Our example implemen-
tation

CloudRand-aware pro-
gram

application easy to start using application/user be aware of
the CloudRand algorithm

simple client-
side CloudRand
translator/software

application plug-in application simple support only specialized user
programs

FireFox extension

kernel device driver kernel no change to applications,
cover all applications on host

require installing kernel
driver

Linxu/Windows kernel
CloudRand driver

hypervisor
modifications

hypervisor no change to existing pro-
gram/os, cover all inside VMs

only effective when using vir-
tual machines

Xen-based CloudRand

router/switch upgrade network no change to existing pro-
gram/os

no internal communication
protection

Click modular router

software-defined
network

network no change to existing pro-
gram/os/hypervisor, cover all
network components

require flow rule installation
overhead

SDN controller applica-
tion

TABLE I
DESIGN SPACE OF CLOUDRAND

has two stages to perform port randomization and translation.

In the initial stage, it obtains policy data from a Cloud

Manager and registers to a mapping table. In the service stage,

the PortRandom element will (i) accept incoming TCP or UDP

that comes through IPClassifier element which is a built-in

element of Click; (ii) confirm whether destination IP/port of

incoming network packet is registered in the mapping table or

not. If so, it will translate and rewrite this port to the original

port. If not, it checks if this packet is targeting to original

port. If it is, it reports this to CloudRand manager, otherwise

it discards the packet. In other cases (not for the CloudRand

service), it will simply work as a regular network router.

We also implement a network-level CloudRand prototype

as an Software-Defined Networking (SDN) application. With

SDN decoupling the control plane from the data plane, the

job of relaying packets to a random port can be migrated to a

controller. Thus, as shown in Figure 4, we implement an SDN

app that (i) monitor the appearance of a new flow (step 1-2),

(ii) calculates a randomized port if its destination is a protected

server (step 3), and then (iii) dynamically configures the switch

so that it translates the port number of every following packets

(step 4-6). To notice a new incoming flow and configure a

switch, we use the OpenFlow protocol [5]. For example, we

listen a packet_in message to handle an incoming flow and

send a pair of flow_mod messages with set actions to mod-

ify the TCP/UDP port number of packets in the corresponding

session. In our SDN extension evaluation, we also use Open

vSwitch, which is a software switch supporting the OpenFlow

protocol and mostly employed in cloud environments [21].

B. Application Level Translator

For application-level translator, currently we implemented

a Firefox browser plugin/tool-bar as shown in Figure 5. If a

client tries to connect to (CloudRand protected) web servers,

he can simply type server URLs in the CloudRand tool-bar.

Then, it automatically translates the port to connect the web

server.
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Fig. 3. Click configuration of the network-level CloudRand Translator.

C. Host Level Translator

This host-level CloudRand translator has two modules: a

kernel monitoring module and a user-level policy module. For

every incoming and outgoing packet, CloudRand translator

will do the examination to identify the validity of each packet.

The examination and translation are at the kernel level, which

means every packet will go through our kernel monitoring

module first. Meanwhile, the user-level component will main-

tain the trusted process list and interact with kernel-level
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Fig. 4. SDN extension and workflow of CloudRand
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component to block illegal packets if necessary. Currently, our

implementation can successfully randomize and translate the

port number of TCP and UDP packets on Windows and Linux.

• CloudRand translator for Windows

We develop a kernel-level filter-hook based on the Win-

dows IP Filter Driver, IpFltDrv.sys, which exists in

both Windows XP and Windows Vista. We manipulate

(randomize/translate/rewrite) the packet fields such as

Dest Port Number and Checksum. Another data struc-

ture,ProcessGuard, specifies the processes which are

allowed to use client-side port translation.

• CloudRand translator for Linux

The implementation on Linux is built on top of the

well-known firewall, IPTables. Through loading the

kernel module IptableNat, we can easily redirect the

packet to the translated destination port using Redirect

option. We note that this is essentially the similar use

of NAT/PAT function supported by IPTables. That is,

existing NAT/PAT capable device can be slightly modified

to support CloudRand port translation function. Through

another IPTables kernel module IptOwner, we can

specify pid option to allow only trusted specific process

to use client-side Port Translation function. User-level

policy module is similar to Windows implementation,

which dynamically correlates the process information to

current running PID.

V. EVALUATION

The CloudRand framework provides an effective and

lightweight solution to greatly reduce the attack surface of

our networked systems. In this section, we conduct an evalu-

ation to demonstrate its efficiency and effectiveness. Section

V-A evaluates CloudRand’s ability to defeat attacks such as

malware propagations. Section V-B deliberately measures the

overhead impact of the CloudRand on hypervisor and other

extended scenarios (e.g., host/network level).

A. Effectiveness Evaluation

CloudRand system can effectively defeat malicious epi-

demic attacks from outside or inside networks. To evaluate its

effectiveness, we build a network with the topology shown in

Figure 6(a). We set up the test in a safe virtual environment

and run Agobot [1](to connect to our controlled command

and control server). The botmaster tries to command the

Agobot to attack two Windows machines, Target A (without

protection) and Target B (with CloudRand protection). Both

Target A and B have DCOM vulnerability which could be

successfully exploited by Agobot. Since Target A does not

employ CloudRand protection, it can be easily exploited by

Agobot, as shown in Figure 6(c). On the contrary, since Target

B has CloudRand service to randomize the vulnerable port 135

and 445, it is not infected, as shown in Figure 6(b).

Next, to evaluate the effectiveness of CloudRand to stop, or

at least slow down, malware propagation in a relatively large-

scale network, we perform a packet-level simulation using

GTNETS network simulator [23]. We use a tree network

topology with a total number of hosts at 2,400. The 2,400

hosts divide into 24 subnets and each subnet could be con-

sidered as a virtual cloud. Their IPs range from 192.168.1.1

to 192.168.24.100. We simulate a UDP worm with scan-

ning rate of 50 packets per second and keep running each

simulation for 10 minutes. At the same time, the simulated

UDP worm only targets at 10 possibly vulnerable ports (such

as 33,37,42,53,80,123,137,138,139, and 194) to perform its

exploitation. In the experiment, we start from one worm-

infected machine in the whole network and let it infect the rest.

We vary the protection coverage of CloudRand to show the

different results, as shown in Figure 7. We can clearly see that

when all networks deploy CloudRand, the worm can hardly

propagate at all. With higher ratio deployment of CloudRand,

the number of final infected machines in simulation decreases

significantly. This clearly confirms that CloudRand is an

effective protection scheme for malware epidemic attacks. And

since it is incrementally deployable on a network, each subnet

can benefit from the technique.

In addition to defeating malware propagation, CloudRand

system can prevent specific ports from being blindly scanned

and thus efficiently filter large volume of unwanted traffic

while still providing legitimate clients access. To demonstrate

this, we perform an examination of how well a trusted client’s

request can be handled in the situation when large volume

of unwanted attacks (e.g., scan attempts) are occurring. For

unwanted traffic generation, we simply generated large number
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Fig. 6. Effectiveness of CloudRand to defeat malware propagation attacks.
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Fig. 7. Worm propagation under different CloudRand protection ratio.

of TCP SYN requests to invalid ports, similar to a SYN

flooding attacks. In particular, we send around 6,000 packets

per second for these unwanted traffic in this test. Figure 8

shows the RTT (round-trip time) performance comparison

when network-level CloudRand protection (deployed in a

Click software router connecting an attack machine and a

normal Apache web server) is turned on and off. We perform

several trials, and in each trial we measure 1,000 times of RTT

and then calculate the mean.

From the figure we can see that in the presence of large vol-

ume of unwanted scanning attempts, we can achieve roughly

more than 2 times faster RTT when the CloudRand protection

is enabled. This is because in this case the router can effi-

ciently filter unwanted traffic and let the legitimate packets go

through. In the case of no CloudRand protection, legitimate

clients have to compete with large number of unwanted traffic

at the router.

This test clearly demonstrates the effectiveness of

CloudRand to defeat unwanted network penetrations and pro-

vide better service for legitimate clients.

B. Overhead Evaluation

In this section, we comprehensively measure the overhead

impact of our CloudRand system. All the experiments were

performed with two machines. The first machine is used as a

server providing CloudRand service and the specification of

this machine is Intel Core Duo Processor at 2.93 GHz with

3GB RAM. Our implementations of on host level, hypervisor
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Fig. 8. Effectiveness measurement of CloudRand in the presence of large
unwanted traffic volume.

level, and network level are realized in this machine. On host

level, each DomU guest ran Windows XP SP2 or Redhat Linux

Enterprise system. On Hypervisor level, Dom0 ran a Centos

5 linux system.

1) Overhead Evaluation on Hypervisor: In our hypervisor

level implementation, deploying CloudRand framework may

introduce extra overhead for each inside virtual machine.

In this section, we conduct several evaluation to measure

the overhead brought to each hypervisor/VM. The overhead

mainly comes from three aspects: (1) CloudRand service regis-

tration; (2) Packet-level examination and redirection/rewriting;

(3) Client-side process monitoring/introspection.

The basic overhead for each hypervisor machine contains

the invocation/updating/termination of CloudRand service. In

our measurement, CloudRand consumes around 0.3 second to

register a new CloudRand-protected service at each hypervisor.

The randomization is synchronized every 24 hours between

hypervisors. The cost of updating one record is around 0.1
second. When user asks for disabling the CloudRand service,

it spends around 0.01 second.

To measure the (translation/rewriting) overhead brought to

each packet, we measure a metric of packet Round Trip
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Fig. 9. Overhead measurement of CloudRand at Hypervisor

Time (RTT). In our test, we measure RTT for 6 trials and

we use wget program [15] to send network packets5. We

have captured all network packets between the test client and

server(s) to estimate the RTT. More specifically, we measured

RTT as the time difference between the first data packet sent

by the wget client and the first response packet received from

the server. For each trial, we sent 1, 000 packets to two virtual

machines with/without CloudRand protection at the same time

and calculate the mean time of all packets. The result is shown

in Figure 9. As the RTT is concerned, the extra overhead

brought is around 2.3% in the best case (around 10% in

the worst case). It shows that our CloudRand is evidently

a lightweight solution and the user can barely realize the

existence of port translation.

Another overhead need to measure is the (in-cloud client-

side) periodic process introspection time. We construct an

environment with four domU virtual machines installed on

one dom0 Xen hypervisor. Among them, two domU virtual

machines are under protection by CloudRand. One Windows

machine runs 19 processes and another Linux machine runs

26 processes. Meanwhile, 4 out of all processes are registered

as CloudRand-protected processes.

We measure the average introspection time taken to allow

registered process initiate a CloudRand protected connection

(TCP or UDP). The consuming time for both TCP and

UDP cases is recorded in Table II. As the result shows,

the introspection overhead is affordable for mainstream cloud

platforms to protect the service in real time. It demonstrates

that our CloudRand can be easily deployed into existing Cloud

computing environment with relatively low overhead.

2) Overhead Evaluation on Extended CloudRand: In this

section, we measure the overhead of extended CloudRand

implementations on both host (kernel driver) level and network

level.

The basic overhead of host-level CloudRand is shown in

5Note that we use wget program to measure RTT in all the following test
cases.

Guest OS # of Processes TCP Time(ms) UDP Time(ms)

XP SP2 4/19 10.6 8.3

Ubuntu 9.04 4/26 9.7 9.1

TABLE II
INTROSPECTION OVERHEAD ON HYPERVISOR LEVEL

Click Router Linux Host SDN App Windows Host
0

0.5

1

1.5

2

2.5

3

A
d
d
it
io

n
a
l 
O

v
e
rh

e
a
d
 [
%

]

Fig. 10. Overhead of Packet Redirection/Rewriting using CloudRand

Table III. At the invocation phase, Windows system need

to load CloudRand kernel driver and policy module. Linux

system enables the iptables module and configures it

according to CloudRand requirement. The termination simply

stops all the CloudRand service.

Invocation(s) Update/Policy(s) Termination(s)

Windows Host 1.63 2.43 1.03

Linux Host 0.013 0.012 0.008

TABLE III
BASIC DEPLOYMENT OVERHEAD OF EXTENDED CLOUDRAND

TRANSLATOR

For each incoming/outgoing packet, the introduced overhead

of redirection/rewriting are summarized in Figure 10. We

measure RTT time with the mean of 1, 000 packets trials.

For host-level measurement, we turn on our click module and

let it act as normal router at the network perimeter. Accord-

ingly, we enable our Windows/Linux kernel driver for each

protected host. For network-level measurement, we construct

two different test environments for evaluating both the click

module and the SDN application versions of CloudRand. The

result of network and host level measurement is compared

with the case without CloudRand protection. In this case, we

measure additional overhead, which is caused by CloudRand,

and describe the overheads in terms of percentage.

As shown in Figure 10, it is evident that the overhead

of CloudRand measured by RTT is extraordinarily small

(less than 2.5% for host-level implementations and between

1.5% and 2.9% for network-level implementations). With

such reasonably small overhead, the extended CloudRand

can provide us with more flexible and complete deployment
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Fig. 11. Overhead measurement between CloudRand and SSL.

choices for various scenarios, such as enterprise network or

even worldwide Internet. We conclude that our CloudRand is

a lightweight, comprehensive, and deployable solution in real

world.

3) Overhead Comparison between CloudRand and En-

crypted Network Channels: Besides measuring the overhead

of CloudRand itself, we are also interested in measuring its

overhead compared with commonly used network encryp-

tion mechanisms such as Secure Sockets Layer (SSL). It is

worth noting that CloudRand is never intended to replace

these encryption mechanisms. Instead, it is quite possible that

CloudRand is used to complement them to make a more secure

cloud computing environment. In this situation, we need to

measure the additional overhead added by CloudRand in the

environment.

To investigate this, we compare the overhead of CloudRand

with SSL, a widely used network encryption protocol. In

our test environment, we enable the SSL module of Apache

web server (with default parameters and no server certificate

checking) and make HTTPS requests at the client side. We

query one web page for 1, 000 times and calculate the average

round-trip time of packets. As a comparison, we query the

same web page with normal HTTP requests from the same

client machine (with CloudRand enabled) and perform the port

translation at the kernel layer of the CloudRand server.

Figure 11 shows the overhead of CloudRand and SSL.

We can clearly see that the overhead of CloudRand is much

smaller than that of SSL; SSL is more than 6 times slower

than CloudRand in the experiment. This result implies that

when we apply CloudRand to a cloud computing environment

to complement network encryption mechanisms, CloudRand

causes almost negligible additional overhead to the environ-

ment.

VI. DISCUSSION

In this section, we review the issues that we do consider

but not fully describe in previous Sections.

Synchronization issue. In order for correct port random-

ization and translation, we require the client and server have

loose synchronization when applying the hash function. Since

a typical time period is one day, this requires very loose

synchronization which will not cause an issue for most hosts.

In case of a failure because of a time lag, the legitimate client

can also try the next day’s hash value. In any case, hosts can

easily use NTP (Network Time Protocol) to synchronize the

time to solve the synchronization problem.

Session management at the change of port. CloudRand

changes its port number periodically to prevent hackers from

guessing current randomized network port. However, it is

necessary to maintain old network connections, to maintain

previously established connections (in previous time period).

In this case, session management table which maintains estab-

lished connections can solve this. Usually, these port changes

do not occur so often since port number alterations occur on

a daily basis or even longer.

Compatibility with some applications. Some applications

such as FTP may have port information embedded in the

application layer packets. Thus, if we only rewrite transport

layer port numbers, there will be problems (not correctly

rewrite application layer port information). This is not unique

to CloudRand. Actually, our system has essentially the same

problem faced by NAT devices. Most of NAT/PAT solutions

already consider this issue and they can perform application

aware rewriting of port information at application level (if they

are in clear text). Our CloudRand can solve the problem in

similar way.

CloudRand deployment on Internet. Although we discuss

CloudRand mainly in the context of clouds (or enterprise

networks), it is clear that it could be easily extended and incre-

mentally deployed onto the whole Internet. Using CloudRand

will definitely increase the diversity of the current Internet,

significantly reduce the cyber attack surface, and dramatically

decrease malware epidemic attacks.

Other Limitations. CloudRand is not designed to be a per-

fect security solution. It has limitations. For example, it does

not prevent legitimate users to leak randomizing algorithms

(keys) to others nor prevent attackers to obtain them from

other approaches (e.g., network sniffing or social engineering),

which are also common assumptions for most (if not all)

cryptographic key related protection mechanisms.

Meanwhile, it cannot prevent the possible invasion caused

by credential stolen through process injection or spawned pro-

cess. Furthermore, CloudRand itself does not indicate which

users should or should not obtain randomizing algorithms,

leaving it as a policy level task for administrators. After all,

CloudRand simply does what it does to reduce, instead of

fully prevent, the attack surface with the moving-target idea.

Since it is orthogonal to most existing security mechanisms,

we believe CloudRand is a valuable add-on to the defense-in-

depth strategy.



VII. SUMMARY AND FUTURE WORK

As a new element in defense in depth, we presented

CloudRand, a lightweight framework and system to protect

cloud computing environments by reducing the attack sur-

face. We implemented CloudRand prototype systems as a

comprehensive toolkit. Our extensive evaluation showed that

our solution adds low overhead to both of the system and

the network, and it can successfully defeat unwanted network

attacks from both of inside and outside. Our solution is also

incrementally deployable in clouds or on Internet, and each

cloud/network can benefit from (and thus be motivated to

deploy) the techniques.

For future work, we will study new coordinated, cross-layer

system interface randomization techniques to defeat cyber

attacks.
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